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Abstract 

A method is described for finding decision boundaries, approximated 
by piecewise linear segments, for classifying patterns in $RW, N > 2, us- 
ing simulated annealing. It involves generation and placement of a set of 
hyperplanes ( represented by strings ) in the feature space that yields min- 
imum misclassification. Theoretical analysis shows that as the size of the 
training data set approaches infinity, the boundary provided by the sim- 
ulated annealing based classifier will approach the Bayes boundary. The 
effectiveness of the classification methodology, alongwith the generaliza- 
tion ability of the decision boundary, is demonstrated for both artificial 
data and real life data sets having non-linear/overlapping class boundaries. 
Results are compared extensively with those of the Bayes classifier, k-NN 
rule and multilayer perceptron, and Genetic Algorithms, another popular 
evolutionary technique. Empirical verification of the theoretical claim is 

also provided. 

1    Introduction 

Simulated Annealing (SA) [1, 2, 3,4] belongs to & class of local search algorithm. 

It utilizes the principles of statistical mechanics, regarding the behaviour of a 

large number of atoms at low temperature, for finding minimal cost solutions to 
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large optimization problems by minimizing the associated energy. Let E{q,T) 

be the energy at temperature T when the system is in the state q. Let a new 

state s be generated. Then state s is accepted in favour of state q with a 

probability pqs = —-MITJ-E^T))'• 
l+e i 

In statistical mechanics investigating the ground states or low energy states of 

matter is of fundamental importance. These states are achieved at very low 

temperature. However, it is not sufficient to lower the temperature alone since 

this results in unstable states. In the annealing process, the temperatwe is first 

raised, then decreased gradually to a very low value (rmin), while ensuring that 

one spends sufficient time at each temperature value. This process yields stable 

low energy states. 

Pattern classification can be viewed as a problem of search and placement of 

a number, H, of hyperplanes (fixed a priori) which can model the decision 

boundary of the given data set appropriately. The criterion to be minimized 

is the number of samples of the given training data that are misclassified for a 

particular arrangement of the H hyperplanes. The arrangement of hyperplanes 

that minimizes the number of misclassified data points is considered to provide 

the decision boundary of the given training data set. 

The present article describes a methodology demonstrating the searching ability 

of SA for finding an appropriate arrangement of H hyperplanes that minimizes 

the number of misclassified points. The effectiveness of the classifier has been 

adequately established for several artificial and real life data sets ; 1th both 

overlapping and non overlapping class boundaries. The results are also coin- 

pared with a similar approach [5] based on genetic algorithms (GA) [4, 6], 
Bayes maximum likelihood classifier, k-NN rule [7] and multilayered perceptron 

(MLP) [8]. 

Besides, a theoretical analysis alongwith an empirical verification is presented 

which shows that for the size of the training data set going to infinity, the 

SA based classifier (or SA classifier) will provide an error probability of the 

training data which is less than or equal to the Bayes error probability, (In tbi9 

regard it may be mentioned here that Bayes maximum likelihood ahßaifier 
[7] is one of the most widely used statistical pattern classifiers which provides 



optimal performance from the standpoint of error probabilities in a statistical 

framework. It is known to be the best classifier when the class distributions 

and the a priori probabilities are known. Consequently, the desirable property 

of any classifier is that it should approximate or approach the Bayes classifier 

under limiting conditions.) 

A brief discussion on the principles of simulated annealing is first presented in 

the next section. This is followed by a detailed description of the SA classifier. 

The theoretical analysis is provided in Section 4 followed by the implementation 

results in Section 5. Finally, the discussion and conclusions are presented the 

last section. 

2    Simulated Annealing : Basic Principles 

In the recent past, application of techniques having physical or natural corre- 

spondence for solving difficult optimization problems has received widespread 

attention. It has been found that these techniques consistently outperform 

classical methods like gradient descent search when the search space is large, 

complex and multimodal. Simulated annealing (SA) is one such paradigm hav- 

ing its foundation in statistical mechanics, which studies the behaviour of a 

very large system of interacting components in thermal equilibrium. 

In statistical mechanics, if the system is in thermal equilibrium, the prqba- 

bility 7rr(s) that the system is in state s, s € S, S being the state space, at 

temperature T, is given be 

-EM 
e kT ...» 

where k is the Boltzmann's constant and E(s) is the energy of the system in 

state s. 

Metropolis et.al. [9] developed a technique to simulate the behaviowr of the 

system in thermal equilibrium at temperature T as follows : Let the system be 
in state q at time t. Then the probability p that it will be in state s at time 



t + 1 is given by the equation 

Ms) = e-
(£(fcEW) (2) 

P     7rr(g) 

If the energy of the system in state s is less than that in state q, then p > 1 and 
the state s is automatically accepted. Otherwise it is accepted with probability 

p. Thus it is also possible to attain states with higher energy values. It can be 

shown that for t -► oo, the probability that the system is in state s is given by 

7rr(s) irrespective of the starting configuration [10]. 

Begin 

generate the initial string randomly = q 

J-    ~   J-rnax 

Let E(q,T)  be the associated energy 

while (T > Tmin) 

for i  = i to k 

Mutate (flip) a random position in q  to yield s 

Let E(s,T)  be the associated energy 

Set q <— s  with probability 1+e-(E(,,T)-B(.,T))/r 

end for 

T = rT 

end while 

Decode the string q  to provide the solution of the problem. 

End 

Figure 1: Steps of Simulated Annealing 

When dealing with a system of particles, it is important to investigate very jaw 

energy states, which predominate at extremely low temperatures. To achieve 

such states, it is not sufficient to lower the temperature. An annealing schedule 
is used, where the temperature is first increased and then decreased gradually, 

spending enough time at each temperature in order to reach therinal equilib- 

rium. 

In this article we have used the annealing process of the Boltzmanii machine, 

which is a variant of the Metropolis algorithm. Here, at a given temperature 



T, the new state is chosen with a probability 

 1 
Pqs — -IB(QX)-E(,,T)) • 

1 + e        ■■*■ 

The parameters of the search space is encoded in the form of a bit string of a 

fixed length. The objective value associated with the string is computed and 

mapped to its energy. The string with the minimum energy value provides the 

solution to the problem. The initial string (say g) of 0 s and Is is generated 

randomly and its energy value is computed. Keeping the initial temperature 

high (say T = T^), a neighbour of the string (say s) is generated by randomly 

flipping one bit. The energy of the new string is computed and it is accepted in 

favour of q with a probability pqs mentioned earlier. This process is repeated a 

number of times (say Jb) keeping the temperature constant. Then the tempera- 

ture is decreased using the equation T = rT, where 0 < r < 1, and the k loops, 

as earlier, are executed. This process is continued till a minimum temperature 

(say Tmin) is attained. The simulated annealing steps are shown in Fig. 1. 

3     Description of the SA classifier 

The correspondence between the physical aspect of simulated annealing and 

an optimization problem is as follows : the parameters of the search space 

(in this case the H hyperplanes), are encoded in strings (usually binary) and 
these represent the different states; low energy states correspond to near, oj>? 

timal solutions (or an arrangement of the hyperplanes that provide minimum 
misclassification); the energy corresponds to objective function (or the number 
of misclassified samples), and temperature is a controlling parameter pC the 
system. The important tasks here are to establish a way of representing and 
generating different configurations (or states) of the problem andI an annealing 

schedule. These are now discussed in details. 



3.1    State/Hyperplane Representation 

In this article, binary string of length I is used to encode the parameters of the 

H hyperplanes. >From elementary geometry, the equation of a hyperplane in 

N dimensional space {X1-X2 XN) is given by 

x N cos a*., + ßN-i sin aN-i = d (3) 

where ßN^ = xw_, cos aN_2 + ßN.7 sina^ 

ßs-2 — XN-I 
cos aN-3 + ßs-s sin a^-3 

/3, = xx cos a0 + ßo sin aa 

The various parameters are as follows : 

Xi : the i th feature of the training points. 

(xux2,...,xN) : a point on the hyperplane 
aw_l :  the angle that the unit normal to the hyperplane makes with the XN 

axis. 
aN-2 : the angle that the projection of the normal in the {Xy - X2 XN.t) 

space makes with the XN.X axis. 

<*! : the angle that the projection of the normal in the (X\ - X2) plane makes 

with the X2 axis. 
a0 : the angle that the projection of the normal in the (Xx) plane m»kes with 

the Xi axis = 0. Hence, ß0sma0 = 0. 
d : the perpendicular distance of the hyperplane from the origin. 

Thus the N tuple < aua2,... ,aN-Ud > specifies a hyperplane in N dimeni- 

sional space. 

Each angle <*,•, j = 1,2,..., N - 1 is allowed to vary in the range of 0 to 2?r, If 

&i bits are used to represent an angle, then the possible values of OCJ are 

0,6 * 2ir,2S * 2TT,36 * 2TT, ..., (2bl - 1)6 * 2TT 

where 6 = ^. Consequently, if the bi bits contain a binary string haying the 

decimal value vx, then the angle is given by Vi * 8 * 2TT. 



Once the angles are fixed, the orientation of the hyperplane becomes fixed. Now 

only d must be specified in order to specify the hyperplane. For this purpose the 

hyper rectangle enclosing the training points is considered. Let (x^an,x^u,x) be 

the minimum and maximum values of feature Xi as obtained from the training 

points. Then the vertices of the enclosing hyper rectangle are given by 

\X\    ,%2   ) • • • ixN   ) 

where each chj, i = 1,2,..., N can be either max or min. (Note that there will 

be 2N vertices.) Let diag be the length of the diagonal of this hyper rectangle 

given by 

diag = ^(xr* - zfn)2 + (*rx ~ xfn)2 + ■•• + (SAT - xfn)2 

A hyperplane is designated as the base hyperplane with respect to a given 

orientation (i.e., for some ai, a2,..., ajv-i) if 

i : it has the same orientation 

ii : it passes through one of the vertices of the enclosing rectangle 

iii : its perpendicular distance from the origin is minimum ( among the hy- 

perplanes passing through the other vertices). Let this distance be dmin. 

If 62 bits are used to represent <£, then a value of v2 in these bits represents a 

hyperplane with the given orientation and for which d is given by dmin + -^ *t»j. 

Thus a string is of a fixed length of I = H({N - 1) * bx + 62), where H = the 
number of hyperplanes. The initial string is generated randomly. 

Note that we have used this recursive form of representation over the classical 

one viz. l\ x\ +h x2 + ... +IN %N — d, where li,...,lx are kno^'u aß the 
direction cosines. The latter representation involves a constraint equation, l\ rf- 
l\ +... 1% = 1. This, in turn, leads to the complicated issue of getting »nvalj4 or 
unacceptable solutions when the constraint equation is violated. However, the 
representation that we have chosen avoids this problem by being uncopstrftinecj 
in nature. -' 



3.2    Energy/Objective Value Computation 

A string encodes the parameters of H hyperplanes as described earlier. Using 

these parameters, the region in which each training pattern point lies is deter- 

mined from equation (3). A region is said to provide the demarcation for class 

i, if maximum number of points that lie in this region belong to class :. Other 

points that lie in this region are considered to be misclassified. The misclassi- 

fications associated with all the regions (for these H hyperplanes) are summed 

up to provide the total misclassification, miss, for the string, which represents 

its energy. 

3.3    New   State   Generation   Process   and   Annealing 

Schedule 

For generating a new configuration, one (or more) random position(s) in the 

bit string is chosen and flipped. This provides a new string, whose energy is 

computed in the above mentioned manner. 

As already mentioned, the crucial task over here is the attainment of low energy 

states, obtained at very low temperatures. If the temperature is decreased 

quickly, then the low energy states tend to be unstable. In order to reach 

stable states, the temperature must be initially increased, and then decreased 

gradually allowing sufficient time at each temperature. This process is known 

as annealing. In order to simulate this method, initially the temperature is 

kept high {=Tmax). A parameter k is used to control the time spent at each 

temperature value. The temperature is decreased according to the formula 

T = rT, where 0 < r < 1. Higher value of r indicates a more gradual annealing 
schedule. The different steps of the SA classifier are shown in Fig. 2. "The, 

process continues until either a string with no misclassified points is obtained 

(miss — 0) or an user specified minimum temperature value (=Tmj„) is attained. 

The final string q at termination provides the solution to the problem. 

8 



4    Relationship with Bayes Error Probability 

In this section we study the theoretical relationship between the SA-classifier 

and Bayes classifier in terms of the error probabilities. The mathematical no- 

tations and preliminary definitions are described first. This is followed by the 

claim that for n -» oo the performance of the SA-classifier will no way be 

worse than that of Bayes classifier. Finally some critical comments about the 

proof are mentioned. 

Let there be k classes d,C2,...,Ck with a priori probabilities Pi,P2,...,P* 
and class conditional densities Pi(x),p2{x),...,pk(x). Let the mixture density 

p(*) = £PjPi(x). (4) 

Let XuX2,...,Xn,... be independent and identically distributed (i.i.d) N di- 

mensional random vectors with density p(x). This indicates that there is a 

probability space {Q,T, Q), where T is a a field of subsets of Q,, Q is a proba- 

bility measure on F, and 
Xi : (ft, T, Q) —> ($lN,B(nN),P) , V* = 1,2,... 

such that 

P(A)   =   Q(Xr\A)) 

=    / p(x)dx 
JA 

VAGP(^) andVi = l,2,.... 

Here B(9tN) is the Borel a field of Sfc*. 

Let 

£   =   {E:E={Si,S2,...,Sk),SiQ$N,Si?Q 

Vt = 1,...,*,^ = ^SiflS; = 0,Vi ^j}. 
•     \ 
.—± 

£ provides the set of all partitions of W* into k sets as well as their permutations, 

i.e., 

9 



£i = (5i,52,53...,5*)e£ 

E2 = (52,51,53,...,5,)G5 
then El^E2. Note that E = (5il5 5i2,..., 5ifc) implies that each Sip l<j<k, 

is the region corresponding to class Cj. 

Let JSb = (50i, 502, • • •, 50jt) € 5 be such that each 50i is the region corresponding 

to the class Q in 5R^ and these are obtained by using Bayes decision rule. Then 

a = EPi/ Pi(x)<J:Pifpi(x) (5) 
i=i     Jsti »=i     Jsti 

VEi = (5n, 5i2, • • •, 5u) € £. Here a is the error probability obtained using the 

Bayes decision rule. 

It is known from the literature that such an EQ exists and it belongs to £ 

because Bayes decision rule provides an optimal partition of $lN and for every 
k 

such Ei = (5n,5i2,...,5u) € £, Y,pih<uPi(x) provides th e error probability 

for Ei G £. Note that E0 need not be unique. 

Assumptions : Let H0 be a positive integer and let there exist H0 hyperplanes 

in $t.N which can provide the regions 50i, 502,. • •, S0k- Let H0 be known a priori 

Let the algorithm for generation of class boundaries using H0 hyperplanes be 

allowed to be executed for a sufficiently large number of iterations in each 

temperature value and for sufficiently low temperatures. Let the number of 

strings be t with misclassification values missi,miss2,... ,misst where 0 < 
missi < miss2 < ... < misst. Let Pij\T) denotes the probability of going 

from string i to string j in ni steps with the temperature value T. It is known 

in the literature that for the adopted SA algorithm 

where Pi.j(T) = ^f"""^,.. /T ■ It follows that 

limr_o+ Pi.j{T) = 1 for j = 1 
= 0 for j 7^ 1. Thus it is known that using SA technique of 

i) making nj —» oo and ii) making T —> 0+, one can get the optimal string and 
its value. 

Let A = {A : A is a set consisting of H0 hyperplanes in $lN}.  Let AQ € A 

be such that it provides the regions 5oi,5o2,-• • ,5ojt in Sft^ i.e., AQ provides 

10 



the regions which are also obtained using the Bayes decision rule. Note that 

each A e A generates several elements of £. Let £A Q £ denote all possible 

E = (Si, S2, • ■ ■, Sk) € £ that can be generated from A. 

Let G        = U £A 
AeA 

Let ZiE(v) = 1 if Xi(u) is misclassified when E is used as a decision 

rule where E G G, Vu; € 0. 

= 0 otherwise. 
n 

Let fnE(w)  = j^-ZisM, wb-en -^ e ^ is usecl as a decision rule. 

Let fn(u)     = M{fnE{u>) :EeG}. 

It is to be noted that the pattern classification algorithm mentioned in Section 

II uses n x /„E(W), the total number of misclassified samples, as the objective 

function which it attempts to minimize. This is equivalent to searching for a 

suitable E € G such that the term fnE(u) is minimized, i.e., for which /„^(u;) = 

fn(u). As already mentioned, it is known that for infinitely many iterations the 

Elitist model of GA s will certainly be able to obtain such an E. 

Theorem :    For sufficiently large n, fn(u) ? a, (i.e., for sufficiently large n, 

fn(ijj) cannot be greater than a) almost everywhere. 

Proof:   Let Yi(u) = 1 if Xi(u) is misclassified according to Bayes ml - Vu> G Q. 

= 0 otherwise. 
Note that Y\, Yi,..., Yn,... are i.i.d random variables. Now 

k 

Prob(Yi = l)   =   Y,Prob(Yi = l/xiisinCj)P(XiisinCj) 
;=i 

k 
=   53 PjProb(u : X{(u}) € S^ given that u> € Cj) 

i=\ 
k 

=   Y^Pj I   pj(x)dx = a. 

Hence the expectation of I*, E(Yi) is given by 

E{YJ = a, Vt. 

11 



Then by using Strong Law of Large Numbers [11], J^li —* a almoct every- 

where. 

i.e., P(u : ijyt{u) /-» a) = 0. 
»=1 

Let B = {u : JjS^w) —^ a} C 0. Then Q{B) = 1. 
i=l 

Note that /n(w) < jE?«i*i(w)i Vn and Vw> since tne set of regions 
(Soi, 502» • • •, Sok) obtained by the Bayes decision rule is also provided by some 
A € A and consequently it will be included in G. Note that 0 < /„(w) < 1, 

Vn and Vw. Let u> £ B. For every u € S, ü"(w) = {/n(w);n = 1,2,...} is a 

bounded, infinite set. Then by Bolzano-Weierstrass theorem [12], there exists 

an accumulation point of U(u). Let y = Sup{y0 : Vo is an accumulation point 

of U(u)}. From elementary mathematical analysis we can conclude that y < a, 
n 

since %£?&) —> a almost everywhere and /n(w) < JE-Li**(w)- Thus it is 

proved that for sufficiently large n, fn(u) cannot be greater than a for w G S. 

It is to be mentioned that the theorem proved earlier indicates that as the 

size of the training data set is increased, the performance of the SA classifier 

will approach that of the Bayes classifier. The fact that /„(w) < a is true for 

only a finite number of sample points, since many distributions can generate 

these points. However, as the size of the data set goes to infinity, only one 

distribution can possibly generate all the points [13]. Also, since we know that 

Bayes classifier is the optimal one in a statistical framework, and there can be no 
better classifier, the above mentioned claim (that fn(u) < a) can only indicate 
that /„(a;) = a; or in other words, the performance of the SA classifier will 

tend to that of the Bayes classifier in the limiting case. This, in turn indicates 

that under limiting conditions, the boundary provided by the SA classifier 

will approach the bayes boundary. This is experimentally demonstrated in 

Section 5.4. 

Note :     The term 'sufficiently large' is borrowed from statistics books and 

indicates mathematical term '—► oo'. 

12 



5    Implementation and Results 

The three data sets used for demonstrating the effectiveness of the SA classifier 

are the following : 

ADS 1 : This two dimensional artificial data set (Fig. 3) consists of 557 

data points belonging to two classes. It is evident that the classes, which are 

separable, have non linear class boundary. 

Vowel Data : This real life speech data consists of 871 Indian Telugu vowel 

sounds in six classes represented by {6,a,i,e,o,u} [14]. It has three features 

corresponding to the first, second and third formant frequencies. Fig. 4 shows 

the data set in the first and second formant frequency plane. 

Iris data : This four dimensional data set for a specific category of irises has 

150 points in three classes [15]. The features correspond to the sepal width and 

length and petal width and length in centimeters. 

Data Set 1 : This two dimensional data set, used for verifying the theoretical 

result in Section 4, is generated using a triangular distribution for the two 

classes, 1 and 2. The range for class 1 is [0,2] x [0,2] and that for class 2 is 

[1,3] x [0,2] with the corresponding peaks at (1,1) and (2,1). If Pi is the a priori 

probability of class 1, then using elementary mathematics, we can show that 

Bayes classifier will classify a point to class 1 if its X coordinate is less than 
1 + Pi. This indicates that the Bayes decision boundary is given by 

x = l + Pi. (6) 

5.1    Performance of SA classifier 

The parameters of SA are as follows : 

Tniu = 100 
T •'■nun = 0.01 
r = 0.9 
k = 100 

13 



Table 1: Performance during training of SA classifier for different values of H 

using 10% i training data 
Data Set Recognition Score 

H = 3 H = A H = 5 H = 6 H = 8 

ADS 1 94.54 98.18 100.0 100.0 100.0 

Vowel 52.94 74.71 95.29 96.65 95.29 

Iris 100.0 100.0 100.0 100.0 100.0 

Table 2: Performance during testing of SA classifier for different values of H 

or 10% training and 90% test data 
Data Set Recognition Score 

H = S H = A H = 5 H = 6 H = S 

ADS 1 91.63 92.23 93.02 93.02 88.64 

Vowel 63.35 65.60 76.84 74.55 70.73 

Iris 89.63 93.33 93.33 93.33 77.78 

Accordingly, the maximum number of iterations will be 8800. Inorder to gen- 

erate a new string, one randomly chosen bit is flipped. 

The results shown are the average values of five different runs of the algorithm. 

Table 1 shows the overall training performance of the SA classifier for data sets 

ADS 1, Vowel and Iris using five values of H when 10% of the data set is used 

for training. As expected, the training score generally improves to a maximum 

of 100% as the number of hyperplanes is increased, since more hyperplanes can 
readily fit the training data set to reduce the number of misclassified points. 

Note that because of the considerable amount of overlap, for the Vowel data, 

consideration of even H = 8 could not provide zero misclassification. 

Tables 2 and 3 show the test results of the SA classifier for these three data 

sets, for five values of H, when 10% and 30 % of the data set are used for train- 

ing while the remaining 90% and 70% data are used for testing respectively. 

Unlike the training performance, the test recognition score improves initialy as 

H is increased upto a specific value, beyond which the score decreases. For 

example consider H = 6 and H = 8 of Table 2 for ADS 1 where the score de- 

14 



Table 3: Performance during testing of SA classifier for different values of H 

or 30% training anc i 70% te st data 

Data Set Recognition Score 

ff = 3 H = A H = h H = 6 H = 8 

ADS 1 91.28 96.92 98.72 96.41 96.20 

Vowel 65.60 67.48 75.98 75.00 79.90 

Iris 93.33 95.23 94.28 91.42 94.28 

creases during testing, although it remained constant (at 100%) during training 

(table 1). This indicates that H = 8 leads to overfitting of the classes during 

training, thereby reducing the generalization capability of the classifier during 

testing. Similar is the case for H = 6 and 8 for ADS 1 in Table 3. As expected, 

the overall recognition capability of the classifier increases when the size of the 

training data set is increased from 10% in Table 2 to 30% in Table 3. 

5.2    Replacing Simulated Annealing with Genetic Algo- 

rithm 

Genetic Algorithm (GA)[6] is another evolutionary search paradigm, based on 

the principles of natural genetic systems and survival of the fittest. Like SA, 

GAs also generally work with a binary string encoding of the parameters of 

the search problem. Instead of dealing with a single string or chromosome, it 
operates on a number of strings termed population. A fitness value, which is 

maximized, is associated with each string which represents the degree of good- 

ness associated with it. Several biologically inspired operators like selection, 

crossover and mutation are applied iteratively over a number of generations 

to generate potentially better solutions. Termination is achieved if either a 
maximum number of iterations has been executed or a user specified criterion 

is satisfied. Details of the method can be found in [4, 6]. 

The fitness computation method is the same as the process of calculating the 
energy associated with a string (see Section 3.2). Roulette wheel selection strat- 
egy, single point crossover strategy with probability 0.8 and bit wise mutation 

with a variable mutation probability value in the range [0.015,0.333] [5] few a 
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Table 4: Comparative Performance of SA and GA for classification for H = 6 

Data Set GA SA 

iter. score iter. score 

ADS 1 512 93.22 5815 93.02 

Vowel - 71.99 - 74.55 

Iris 22 93.33 97 93.33 

population size of 20 are chosen for the G A. The maximum number of iterations 

is fixed at 1500. The comparative performance (in terms of both the test score 

and number of iterations required for attaining zero misclassification during 

training) of SA and GA for the classification problem is presented in Table 4, 

when 10% data is considered for training and the remaining 90% for testing. 

An entry '-' field indicates that zero misclassification could not be achieved even 

after the maximum number of iterations was executed. 

As is evident from Table 4, the test recognition scores of both GA and SA 

based classifiers are comparable. Although, the iterations required to attain 

zero misclassification for GA is less than that for SA, the number of string 

evaluations is much more since one iteration of GA corresponds to a maximum 
of 20 strings, which is the size of the population. On the other hand, exactly one 

new string is evaluated in each iteration of SA. On this count, GA requires at 

most 10240 and 440 string evaluations for ADS 1 and Iris respectively, which 

is significantly more than that required in SA. However, one must note that of 

the 10240 (or 440) strings evaluated by GA for ADS 1 (or Iris) there will be 

many replications. In fact, only a relatively small fraction of the strings will be 

unique. 

5.3     Comparison with other classifiers 

The performance of the SA classifier is compared to Bayes maximum likelihood 

classifier, Multilayered Perceptron (MLP) and k-NN rule. Both MLP (with hard 
delimiters) and k-NN rule are known to provide piecewise linear boundaries, 

which is the underlying philosophy of the SA classifier. /:^^ 
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Table 5: Comparative Test Per 
Data Set 

ADS 1 
Vowel 
Iris 

SA classifier 
forH = 6 

93.02 
74.55 
93.33 

:brmance with 10% Training Data 
Bayes max. 
like, class. 

85.65 
77.73 

83.22 

MLP 

82.47 

60.30 

74.81 

k-NN 
k — y/n 

90.23 
70.35 
90.37 

k-NN algorithm is executed taking k equal to y/n, where n is the number of 

training data points. It can be proved that for such a form of k, the error 

probability of the k-NN rule approaches the Bayes error probability. For the 

Bayes maximum likelihood classifier, unequal dispersion matrices and unequal 

o priori probabilities (= * for nf patterns from class i), are considered. In 

each case, we assume a multivariate normal distribution of the samples. 

For MLP, learning rate and momentum factor are 0.9 and 0.1 respectively. 

Online connection weight updation, i.e., updation after the presentation of each 
training data point, is performed. A maximum of 10000 iterations are allowed. 

The network architectures for ADS 1, Vowel and Iris data sets are 2-5-2, 3- 

8-6 and 4-5-3 respectively, where the first and the last numbers represent the 

number of nodes in the input and output layers, and the intermediate number (s) 

represent the number of nodes in the hidden layer(s). 

The results in Table 5 show that the SA classifier provides superior perfor- 

mance to all the other classifiers for both ADS 1 (where k-NN is known to 

perform well) and Iris. For the Vowel Data, the result of the Bayes classifier 

is the best. In fact, the Bayes classifier is known to perform well for this data 

[14]. In this case also, the recognition score of the SA classifier is found to be 

closer to the Bayes score as compared to MLP and k-NN. 

5.4    Empirical Verification of the Theoretical Result 

As a consequence of Theorem in Section 4, the boundary provided by the SA 

classifier approaches the Bayes boundary under limiting conditions. Fig 5 (a- 

c) demonstrates that this is indeed the case for the Data Set 1. The Bayes 
boundary is a straight line x = 1.4.   The SA line is marked with an arrow, 
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Fig 5 (a), (b) and (c) show the SA lines obtained for n = 100, 1000 and 4000 

respectively. Only 100 data points are plotted in the figures for clarity. It is 

obvious from the figures that as n incre.ases from 100 to 4000, the SA line also 

approaches the Bayes line, so much so, that for n = 4000, they lie very close to 

each other. 

6    Discussion and Conclusions 

A pattern classification methodology in KN, using simulated annealing for 

search and placement of a number of hyperplanes in order to approximate the 

class boundaries of a given training data set, has been described. An extensive 

comparison of the methodology with other classifiers, namely the Bayes classi- 

fier (which is well known for discriminating overlapping classes), k-NN classifier 

and MLP (which are well known for discriminating non-overlapping, non-linear 

regions by generating piecewise linear boundaries) is also presented. The re- 

sults of the proposed algorithm are seen to be comparable to, sometimes better 

than, them in discriminating both overlapping and non-overlapping, non-convex 

regions. 

A distinguishing feature of this approach is that the boundaries (approximated 

by piecewise linear segments) need to be generated explicitly for making deci- 

sions. This is unlike the conventional methods or the multilayered perceptron 

(MLP) based approaches, where the generation of boundaries is a consequence 

of the respective decision making processes. 

A theoretical analysis of the aforesaid classifier establishes that under limiting 

conditions of infinitely large training data sets, the error probability of the SA 

classifier during training is less than or equal to that of the Bayes classifier. 

This, in turn, indicates that when the size of the training, data set goes to 

infinity, the boundary provided by the SA classifier approaches the Bayes 
boundary. This finding is also experimentally verified for a data set, generated 

using triangular distribution, where the Bayes boundary is known exactly. 

A comparison of SA with GA for this classification problem shows that both 
perform comparably in terms of the test recognition scores. This is expected, 
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since both are stochastic optimization techniques, working on the same principle 

of approximating the class boundaries using a number of hyperplanes. In terms 

of string evaluations required to obtain the optimal performance, SA appears 

to score over GA. However, one must note that it is very difficult to obtain 

the actual number of distinct string evaluations in GA, since strings are often 

replicated. The actual number of distinct evaluations will, in fact, be a small 

fraction of the quantity (population size x number of iterations). 

Although SA is found to perform comparably to GA, there appear to be several 

factors contributing to the predominance of GAs in the literature. L SA, two 

main control parameters are to be selected appropriately in order to obtain 

good performance.   These are the values of r (which controls the sequence 

of T) and k (the number of iterations executed at each temperature).   On 

the other hand, in GA, only the maximum number of iterations (or stopping 

time) must be appropriately selected. Other than this, both the methods need 

proper tuning of several other parameters, e.g., T*««,!'™« in SA, probabilities 

for crossover, mutation in GA, etc.   Additionally, in the advanced stages of 

the SA algorithm, the temperature values should be smaller than the smallest 

difference of the energy values in order to provide good performance. Since for 

the pattern classification problem, this value is 1 (minimum non zero difference 

of number of misclassified points) and rmin = 0.01, this requirement is met. GA, 
with roulette wheel selection, is, on the other hand, immune to this difference. 

Finally, since SA is inherently sequential in nature, not much improvement 

can be derived in parallel computing platforms, while there is scope for such 

improvement in GA. One must note that very basic versions of both SA aild 
GA are used here. Use of enhanced models and improved operators for Iboth 

SA and GA may provide better performance. For example, in case of SA, other 

cooling schedules [16, 17] may be used. Similarly, modified versions of GA, like 
GACD (genetic algorithm with chromosome differentiation), may be applied 
which has been found to improve the classification performance [18]. 
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T = T njof 
q <— initial randomly 

generated string 

Compute miss(q, T) 

s <— mutate random position in q 

Compute miss(s,T) 

X 
q *— s with prob. 

l+e' 
-(mi«(9,in — miaafaT)) 

Decode the parameters 
encoded in the final 
string q 

X 
i = i + l 

Figure 2: Steps of the SA classifier 
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FIGURE CAPTIONS 

Fig. 1 - Steps of Simulated Annealing. 

Fig. 2 - Steps of the SA classifier. 

Fig. 3  - Artificial data set ADS 1. 

Fig. 4 - Real life speech data, Vowel data, in the first and second formant 

frequency planes. 

Fig. 5(a) - Data Set 1 for n = 100 and the boundary provided by SA 

classifier (marked with an arrow) along with Bayes decision boundary. Class 

1 is represented by '+' and class 2 by 'o'. 

Fig. 5(b) - Data Set 1 for n = 1000 and the boundary provided by SA 

classifier (marked with an arrow) along with Bayes decision boundary. Class 

1 is represented by '+' and class 2 by 'o\ 

Fig. 5(c). - Data Set 1 for n = 4000 and the boundary provided by SA 

classifier (marked with an arrow) along with Bayes decision boundary. Class 

1 is represented by '+' and class 2 by 'o'. 
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